--- title: "tsdataleaks" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{tsdataleaks} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r, include = FALSE} knitr::opts_chunk$set( collapse = TRUE, comment = "#>" ) ``` ```{r setup} library(tsdataleaks) library(ggplot2) library(dplyr) library(tidyr) library(viridis) ``` To demonstrate the package functions, I created a small data set with 4 time series. ```{r example, comment=NA} set.seed(2020) a <- rnorm(15) d <- rnorm(10) lst <- list( a = a, b = c(a[10:15]+rep(8,6), rnorm(10), a[1:5], a[1:5]), c = c(rnorm(10), a[1:5]), d = d, e = d) ``` ## `find_dataleaks`: Exploit data leaks ```{r, comment=NA, message=FALSE, warning=FALSE} # h - I assume test period length is 5 and took that as wind size, h. f1 <- find_dataleaks(lstx = lst, h=5, cutoff=1) f1 ``` Interpretation: The first element in the list means the last 5 observations of the time series `a` correlates with time series `b` observarion from 2 to 6. ## `viz_dataleaks`: Visualise the data leaks ```{r, comment=NA, message=FALSE, warning=FALSE} viz_dataleaks(f1) ``` ## `reason_dataleaks` Display the reasons for data leaks and evaluate usefulness of data leaks towards the winning of the competition ```{r, comment=NA, message=FALSE, warning=FALSE, fig.height=5, fig.width=10} r1 <- reason_dataleaks(lstx = lst, finddataleaksout = f1, h=5) r1 ```